Шум



         

Обесшумливание и изоляция звука - часть 9


Рис. 53. Зависимость между собственной частотой фундамента и его статическим прогибом под нагрузкой.

Поскольку проектируемое нами ограждение предназначено для дизель-генератора, возникают дополнительные проблемы, в частности вопросы охлаждения, которые могут оказаться очень серьезными. Если радиатор дизеля размещен при установке, то окажется необходимым впускать и выпускать из ограждения несколько тысяч кубических метров воздуха в час. Каким же образом пропускать воздух внутрь и наружу, в то же время не выпуская наружу шум?

Прежде всего придется прорезать в стене входное и выходное отверстия. Это откроет дорогу воздуху, но также и звуку. Как обычно, отверстия можно рассматривать как самостоятельные источники звука. Эти источники будут создавать полусферические волны. В области более высоких частот скажутся интерференционные эффекты, вследствие которых излучение высокочастотного звука будет направлено в основном вперед от отверстия.

Рис. 54. Плоские волны в воздуховоде с поглощающей облицовкой.

Что здесь можно предпринять? Каким образом заглушить шум, бегущий в газовом потоке вдоль трубы или воздуховода? Если воздуховод полностью перекрывает отверстие, звук будет распространяться внутри него двумя путями: часть волн, вошедших в воздуховод, побежит, отражаясь последовательно то от одной, то от другой стенки. Другие волны побегут прямо вдоль воздуховода как плоские волны, не ударяясь о стенки. Если стенки воздуховода плохо отражают звук, то есть поглощают его, то волны первого типа далеко не «убегут». Как далеко пробегут эти волны, зависит от угла, под которым они падают на стенки, ширины воздуховода и коэффициента поглощения облицовки стенок. Для обычного типа звукопоглощающей облицовки амплитуда волн, падающих под углом, превышающим 30°, снизится до уровня плоских волн уже на расстоянии примерно четырех поперечников воздуховода (рис. 54). Что касается плоских волн, то причина их поглощения не так проста.


Содержание  Назад  Вперед